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SUMMARY

A method which may be used at high supersonic Mach numbers 1s
described for calculating the flutter speed of wings having camber in
thelr deflectlion modes. The normal coupled vibration modes of the wing
are used to derive the equations of motion. Chord deflectlons of the
vibration modes are approximated by polynomlels. The wing may have a
control surface and may carry external stores although no aerodynamic
forces on the stores are presented. The aserodynemic forces that are
assumed to be acting on the wing are obtained from plston theory and
also from a quasi-steady form of a theory for two-dimensional steady
flow. Ailrfoll shape and thickness effects are taken account of in the
analysils.

The method 1s used to calculate the flutter speed of some wings
whilch had been previously tested at Mach numbers of 1.3 to 3.0. Com-
parison of the caelculations and experlment 1ls made for flat-plate 60°
and 45° delte wings and also for an untapered 45° sweptback wing.

INTRODUCTICN

The requlrements for low drag at high speed have led to the use of
thin low-aspect-ratio wings. Structural weights must also be minimized
to avold penallzing performance. When such wings are desligned primerily
for the strength required to carry a glven statlic load, the relative
stiffness 1s considersbly reduced, particularly in the reslstance to cam-
ber deformation. This tendency for wings to deform in camber has intro-
duced a new element in the flutter plcture, namely, a need for a method
of analysls that can teke into eccount such deformations. Such a pro-
cedure should be sultable for progreming on digital computing equipment
and could be used a8 a reference calculation for the correlation of data.



NACA TN L4335

In reference 1, several aerodynamic theories were discussed and used
in comparative flutter calculations. Piston theory, described in detall
in references 2 and 3, was one of the simpler methods discussed. It was
shown to glve results in agreement with more exsct theories when used in
. two~degree-of -freedom flutter calculations for Mach numbers greater than
about 2. It 18 easily adaptable to the present problem of including cam-
ber deformations, because of its inherent simpliclty. A quasi-steady
aerodynamic method, deduced from second-order steady-flow theory, was
also tried for comparison with piston theory. Both of these methods
allow the effects of alrfoll shape and thickness, which are not treated
in the linearized aerodynemic theoriles, to be included.

In this report a procedure for flutter analysis utilizing the nor-
mal (coupled) vibration modes, which include cambering deflections, as

© the structural input 1s presented. The first part of the report contalns

the derivatlion of the flutter determinant. The second part has the

results of several applications to low-aspect-ratio wings and presents a

comparison with some experimentel results. In order to illustrate the pro-

cedure, a sample calculation 1s glven 1n the appendix.

SYMBOLS
AiJ’BiJ’CiJ’DiJ surface integrals of wing properties
a speed of sound, ft/sec

(ai(n)> ’(bi(n)) coefficients of polynomials approximating mode shape
P a at station n in mode i

b local semichord, Pt

F dissipation function (eq. 11)

£y (x",y") modal function for mode 1

fi(n)(x) polynomisl which approximates mode 1 at station n

G = ZL%%JE14 -

(y + 1)M* - 4p2

G =
2>
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structural damping coefflclent

* number of modes in analysls

mass moment of inertie of store in pltch about attach-
ment point, lb-sec2-ft

number of polynomials used to approximate chordwise
mass distribution

reduced frequency, bw/V
stiffness influence function, 1b/ft/sq £t
wing semlspan, £t

x-coordinate at ends of mass Ilnterval

Mach number

generalized mass for mode 1

mass per unit ares, slugs/sq £t

mass of store, Ib-seca/ft

coefficlents of polynomials epproximating mess distri-
butlon at station n I1n interval «

index indiceting spanwlse stetion

number of spanwlse stations used to approximate wing
properties

degree of polynomials
pressure, 1b/sq £t

static unbalance of store 1n pitch about attachment
point, 1b-sec?

thickness terms defined by equation (26)

kinetic energy

time, sec
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U potential energy v
\2 velocity, ft/sec - g
w downwash veloclty, posiltive messured away from surface,
£t/sec y ;
2
it
X={—=)(1+1
(w>( g)
x',y',2' Carteslan coordinates
X,y coordinates along chord, in fraction of local chord,
and along span, in fractlon of semispan, respectively
Xy coordinate of flep leaeding edge, fraction of local chord M
Z(x',y') function describing alrfoil surface, positive away from .
mean surface -
Z(n)(x) function describing airfoill contour at station n,
positive away from airfoil mean line
z(x',y',t) vertical coordinete of deflected wilng mean surface,
positive up : .
B=yM2 -1 .
7 ratio of specific heats
By vertical displacement of deflected wing mean surface at

store attachment point in mode 1

€4 slope of deflected wing mean surface, relative to
undeflected mean surface, in stream direction at
store attachment point in mode 1% : -

b= Mass of wing . -
t

:tpf b2
0

£ 1(1-,) generalized coordinate of motion in mode 1 _

amplitude of generalized coordinate for mode 1

g
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p air density, slugs/cu ft

w circular frequency, radians/sec

Wy 1th naturel cilrcular frequency

Subscripts:

i, indices indlcating mode

) free stream

p,q,r,8 indlces pertalning to terms in polynomlals

R reference

K index which denotes the interval along chord over which

mass distribution is approximated by a parabola

. Superscripts:

1,2, 3, . . .n spanwise station

Matrix notation:

[ ] square

E ;l diagonal
A dot over a symbol indicates differentistion with respect to time.

ANALYSIS

In order to develop the procedure, certain classical methods of
flutter analysis are to be applied. Consider a wing of arbltrary plan
form whose mass, stiffness, and geametrlc properties are known. A right-
hand coordinate system x',y',z', as shown in figure 1, with the origin
at the leading edge of the wing root is used to describe these properties.
The wing has a flap which 1s hinged about its own leadlng edge. The air-
foll shgpe 1s described by a surface Z(x',y') which is measured fram
the mean surface of the wing and 1s teken as positive away from the mean
surface. The mass distribution 1s m(x',y'), the mass per unit area at
any point on the wing. The stiffness influence function is k(x',y'),
an equlvalent spring constant at any point on the surface.
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Derivetion of Equations of Motion

Assume that the deflections can be described by superposing the
first I vibration modes of the wing. It 1s sssumed for convenience that
these modes are normal modes. Then, if fi(x',y') is the model function

describlng the deflected position of the mean surface in the ith mode and
gi(t) is the corresponding time-dependent generalized coordinate, the

camplete description of the position of the wing 1s
I

z(x',y',t) = Z fi(x',y')gi(t) (1)
i=1

With the position of each polnt so described, the equations of motion
can be written with the ald of Iagrange's equation ln the form

d foT oT U ar
by . - + + ] = (2)
dt(agi) TR

wvhere T and U are the kinetlc and potential energles, respectively,
F 18 a dlssipation function, and Qi is & generalized force.

Kinetlc and potential energies.- The kinetic and potentlal energiles
of the system can be determined by using the propertles of normal modes.
The kinetlc energy will be

T=2 ﬂm(x',y')[i(X',Y':t)]aﬂ' dy' (3)
g

where 8 denotes integration over the entire surface of the wing. Com-
bining equation (1) with equation (3) ylelds

I I
T -} 121 JZL £y ()8,(5) Jm(x',y')[fi(x' )] [yt ) ax e

(1)

Since the modal funections are normal modes, the orthogonallty relation,
derived, for example, in reference 4, applies. That is,
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[[mtet g fealerr)] [yt syt ax oyt =y (1= )
8 (5)
ﬂm(x':yl) fi(x':y')] fd(x' :yl)]dx' dy' =0 (1 # J)

8

wvhere M; 1s the generallized mass 1n mode 1. Thus, the kinetlc energy
can be written by using equation (5) as

1 2
T =3 Z M, [éi(t)] (6)

i=1

The potential energy of the system 1s

U= -12-‘- ﬂk(x',y')[z(x',y' ,tﬂde' dy! (7
s

Substituting equation (1) into eq_ua.tion (7) ylelds .

=% Z z g, (8)8 (t)ﬂk(x',y )[1(::',5' )] [fd(x',y )]dx' ay' (8)

1=1 j=1

Now, the orthogonallty relation of equation (5) can be written as

JESERIACED] [ACE LA
8

‘[/“k(x':y")[fi(x_' :Y')] Eflj(x';yl)]dx' ay'
S

where Wy is the natural frequency of mode 1. Thus, the potentlal

U=2x i a2y [gi(t):l (10)

1=1

I
e
0
™
"
Cx
-

( (9)

n
(@]

(143

o

energy 1s
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Dissipation function.- Reference 5 dlscusses the development of a
dissipation function which 1s convenlent for allowing for internal damping
in flutter analyses for the particular case of harmonic time variation.
This function is a convenlent expression which, when differentiated with
respect to the velocltles ﬁi(t), glves the generalized damping force in

the system. For & wing which has structural damping, the dissipation
function can be written

L - 2
4§ e o] =
1=1

where 8y is the structural damping coefficlient in mode 1.

Equations of motion.- Operating on equations (6), (10), and (11),
as indicated by equation (2), ylelds the equations of motion

X
. 2,
Migi(t) + SiM:L % gi(t) + miaMigi(t) = Z QJ (12)
. J=1

Generallzed Forces

The external forces acting on the wing which influence the flutter
system are aerodynamic forces. These aerodynamic forces will be calcu-
lated by two procedures: (a) piston theory and (b) a quasi-steady method
based on second-order two-dimensional theory.

Piston theory.- Plston theory has been developed and discussed 1n
references 1 to 3. The basic agsumptions of this theory are slender
profiles and high Mach numbers 8M2:>> 1.0). As a result of these assump-

tions, the x' component of fluld veloclty changes very little along the
profile and is always much greater than the speed of sound. Thls means
that disturbances at one point on the wing induce only a small effect at
another point. Piston theory neglects these small induced effects by

assuming & point. function relation between pressure and downwash velocity.

This relation essumes that the local pressure on an alrfoil is related to
the local fluld velocity normal to the free stream in the same manner
that the pressure on a piston in a one-dimenslonal channel is related

to the velocity of the piston. Obviously, three-dimensional effects are
not included in piston theory. However, these effects on wings are
relstively smell at high flight speeds.

The second-order plston-theory relation between pressure and down-
wash, a8 glven in reference 3, is

»
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pP-p = pa.al:l;- + —r<7 + 1 E“)a:' (13)

The downwash (or piston veloclity) at the point under consideration is w
and w/a should be less then 1.0. This expression has been found to
apply reasonably well for Mach numbers greater than about 2.0.

Quasi-steady second-order theory.- An expression similar to plston
theory for the pressure on a wing can be obtalned from the second-order
theory for steady flow which is glven, for instance, in reference 6. If
the local steady angle of attack at a polnt on the surface 1s replaced
by the instantaneous (slowly varying, hence quasi-steady) local angle of
attack, the pressure at the point 1s

S e IS

Equation (14) approaches the piston-theory pressure (eq. (13)) if the
Mach number is very large; that is, B = M. Equation %lll-) contains no
agsumption about the Mach number belng large; thls expression could give
more useful results for pressure than piston theory in a range of Mach
numbers around 2.0.

Downwesh.~ The downwash appesring in equations (13) and (14) is the
instenteneous local slope in the streem direction multiplied by the free-
stream veloclty. It can be separated into dlsplacement and alrfoil-shape
terms (as in ref. 2) which are not the same for the upper and lower sur-
faces of the wing. If =z(x',y',t) is the position of the mean surface
and Z(x',y') describes the contour of the eirfoil surface measured from
the mean surfece, the downwash will be

For the upper surface:

W o= ( ai, 3 )z(x',y s8) + V ﬂ;{:—y') (15a)
For the lower surface:
w = -(V -a% + g—t)z(x',y B + V _az(:ac;:y') (15v)

Downwash 1is poslitive when measured away from the surface of the wing.

Differential pressures.- Pressures acting on the wing surface are
found by substituting equation (15) into equation (13) or (14). The
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differential pressure, in the positive =z' direction, acting across
the wing 1s then determined by subtracting the pressure on the upper
surface from the pressure on the lower surface. If only time-dependent
terms and terms which are linear in displacement are retained, the dlf-
ferential pressure when the piston theory is used is

Ap(x!',y',t) = "295-E- + G E% Z(x' Jyl_.)]l:(v 0 + 'a—)z(x' A :til (16)

x' dt
wvhere G =M Z—%—E. Use of the quasi-steady theory would multiply the

right-hand side of equation (16) by = factor of M/ﬁ and change théjfac-

2
tor G to §=M4(7+1)'”B
233

. The factor G approaches G for very
large Mach numbers.

The model representation of the wing's motion (eq. (1)) can be sub-
stituted into equation (16) and the resulting expression for the differ-
entlal pressure is

T ;

Ap(x!',y',t) = '295-2 E—"‘G 'a—i",' Z(x',y'):ll: if‘d—éxx';ﬂ gj(t) +fJ(x':Y')éJ(t)]
J=1

(1)

Generelized aerodynsmlc forces.- The generalized aserodynamic force
in mode 1 cam be interpreted in terms of the total virtual work in
mode 1 due to the serodynamic forces. As shown in reference k4, this
generalized force 1s determined by the integration over the surface of
the product of the differential pressure distribution and the deflection
distribution in mode 1. The result for plston theory, when equation (1T)
1s used for the pressure, 1ls

I -
o=z ) [[ovegdates|l EEEL o s
J=1 g

fd(x')Y')éJ(t)] Ei(x"y') ax' gy’ (18)

For systematic evaluation of equation (18), it 1s convenlent to separate
the terms as follows:
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I
~2pa, Z [V(Aid + Gcid)gd(t) + (Byy + GDj_J)EJ(t)] (19)

Q =
J=1
where
7
Sl T R
8
BiJ = ﬁ[fd(x':Y' )] Efi(X',Y')]dx' ay!
8 _ > (20)
ers = I [ 2t A s o
8
Dyy = ‘[/‘La%- z(x! ,y'): :fdkx',Y')] E’i(x' ¥ axt dy!
8 J

Equaetions (20) are parameters which are constant for e glven wing,
depending only on the mode shape and the contour of the wing surface.
The quasl-steady aerodynamlc theory willl alter the generallized force
expression (eq. (19)) by the multiplicative factor M/B and substitute
G Zfor G.

Flutter Determinant

The flutter determinant for this system may be obtalned from the
equations of motion (eq. (12)) and the generalized forces (eq. (19)).
In order to obtain a flutter solutlon, the assumption is made that the
damping coefficient in ell modes 1s the same; that 1s, g =8 =...=8

The assumption of simple harmonic motion is not required when the simpli-
fled merodynamic theorles are used since the roots of the characteristic
equation could be examined dlrectly. However, this procedure ls presented
in the usuel form for flutter calculatlons by letting the time variation
be e simple harmonic varlation to obtain the borderline flutter condl-
tion. If equations (12) and (19) are combined and the terms rearranged,
the equations of motlon at flutter for plston-theory aerodynemics become
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I 2

2 2p b
Mil:(um)—i) X - l]Ei + 5 JZL <$> (Aij + GC:LJ) +
1(-3-?-)(313 + GDiJ>:l EJ =0 (subscript 1 =1,2, .. .I) (21)
where
~
£(t) = Eemt
2
x=(%l-) (1 + ig)  (22)
kp = bp §

The subscript R refers to any convenlent reference station.

The requirement for & nontrivial solutlon to equations (21) is that
the determinent of the coefficlents of gi must vanish. Thus, in matrix

notation,

2

e -2)) + @B+ ) @B ] -0

where [] indicates a square matrix and [;I indicates a diasgonal

matrix. This equatlion must be satisfied at any reduced frequency, Mach

number, and density as long as the motion is simple harmonic. A common

method of finding the borderline case of neutral stebility is by solving
for the velocity at which zero demping 1s required to maintaln harmonie

motion.

This flutter determinant has been derived by using plston-theory
aerodynemics. If the quasi-steady pressures glven by equation (14) had
been used, the flutter determinant would be the same except_that B
would replece M and the factor G would be replaced by G.

The flutter equations as derived herein contain alrfoil-shape terms.
The usual assumption of linearized supersonic theory is that these terms
are negligible. In order to drop thickness terms from this calculation
and thus have a high Mech number low-frequency epproximation for linear
theory, 1t is only necessary to set the factor @G (or 5) equal to zero
wherever 1t appears in the flutter determinant. -
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Representation of Wing Deflectlons

Closed-form eveluation of the surface Integrals deflned by equa-~
tions (5) and (20) 1s not practical for the complex modal deformation
shapes normally possessed by wings. In this report, a numerical evalua-
tion of these integrals is accomplished by approximating the wing charac-
teristics at a limited number of spanwlse statlions, performing the chord-
wise integrations, end then summing spanwise. In order to use this
method, the wing 1s dlvided into N spenwise statlions, parallel to the
alrstream. At each of these statlions, the chordwise distribution of dis-
placement in mode 1 1s epproximated by a polynomiel of degree P over
the chord sheed of the flap and by a polynomial of degree @ over the
flep, as shown In figure 1. That is, the total deflection at station n
in mode 1 1s given by

P S\
fi(n) (x) = Z (ai(n))Pxp (0 SxS xl)
p=0
1 (2k)
Q
fi(n)(x) = Z (bi(n)) x* (xl <x< 1.0)
Q=0 ¢ _

vhere x 1s a nondimensional streamwise coordinate having the value
zero at the leading edge and 1.0 at the tralling edge. The coeffi-

clents (ai(n)) and (bi(n)> are constants. This serles of equa-~

P q
tions epproximates the modal function :I'.‘i(x' ,¥') where the y' varia-

tion has been repleced by an epproximation at N spanwlse statlons,
denoted by the index n.

The surface integrals of equation (20) cen be written in terms of
the deflection polynomlals by substltuting equation (24). The integrals
of equation (20) involve the products of two polynomiasls or the product
of a polynomisl and the derivative of another polynomial. The spanwlse
coordinete becomes ¥y, which 1s zero at the wing root and unlity at the
tip. The chordwlse lntegratione for Ci.j end Dij ere done by parts

in order to get the alrfoll cross-sectlonal properties in convenlent
form. Thus, equaetions (20) become
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-

h

N
inlr
ZM»“’

p (n) (n))réﬂ‘ }“ ;-° ZQZ: 1(b4("’)q(b1(n)).=°"'ld= 4y
q=0
sy g [ [ iz (n) (n)) ] e ri Z (n) m)
q=0 s=0

— f ()

SR 5 b )

=0 a=0

e 3l 3 B0 - £ 20000

n
The tv(n) and sv( ) terms appearing in these equations are constants

which are determined by the asirfoll thickness and cross section and are
defined by the followlng equatlions:

5 () (xl)v[én_)ﬁﬂ)] ]

-

v 2b

vfxlxv-l.m&

0 2b

- 0] o] [, s |

(26)

where v takes on the values of the indices in equation (25). The

quantity Z(n)(x), 1llustrated in flgure 2, describes the airfoil contour

at statlon n and 1s teken as positive when measured away from the mean
chord.

When the thickness goes to zero, the t (n) and sv(n) terms

become zero. However, as previously mentioned, a zero-thickness calcule-
tion can be accomplished numerically by setting G or G equal to zero.
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Generalized Mass

Distributed mass.- The generalized mess My (defined by eq. (5))

can be computed in any convenient manner. However, 1f the wing is of
golid construction or has asmass distribution which is not too irregulsr,
the mass distribution cen be spproximated at the N statlons discussed
in a previous section by & series of parabolas; thus the generalized
mass can easlly be evaluated. If the wing chord at a spanwise station n
is broken into K arbitrary intervals, as shown in figure 3, the mass
per unit area in any one of the Ilntervels x 1is given by

200 = (2) ¢ (m®) 2+ ()2 (asxsy) @

If the wing hes an alleron, the appropriate mass interval can be mede to
colncide with the eilleron. That 1s, 7'K-1 wlll equal X for the
example illustrated. With the mass distribution approximeted in this
menner and the deflections approximated by equation (24), the generalized
mess from equation (5) becomes

. -

K-1
A AR G
uc=1 k=1
1[ 2 : 1.0
(m2(n) )Kxg_ pzo(ai(n))f ax + flm (mo(n) )K N (ml(n) )Kx +
e i
()2 5,6t 0

External stores and pods.- In order to asccount for riglidly attached
external stores or pods, additions must be made to the previous analysis.
For the present case, the assumption 1s made that aerodynemic forces
acting on the body are negligible. This means that the terms A:LJ’ BiJ’

Cyy, and Dy defined by equation (20) are unaffected. The only way

that the stores can enter the problem 1s through the kinetic and potential
energles and the dissipatlion function.
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If the store 1s represented by a concentrated mass, inerties, and
unbalance about its attachment polnt, the attachment point displacement
and slope in the stream direction for mode 1 Dbeilng glven by 8

and €5 respectively, the lncrement in kinetic energy which must be
added to eq_uation (4) ie

I

AT = }: }: §i(t)§J(t)[§5518 + 8, (%iad + 6381) + I, eieé] (29)
121 =1

The orthogonallty relation between normal modes will apply for modes
determined with the addlitional mass of the store 1n the system. Thus,
the generalized mass M1 for a wing carryilng external stores would be

. 2
M, = ﬂ m(x',y') fi(x',y') dx' dy' + [mabi + 28, €48y + I :|(5o)
]

With this new definition of the generaliged mess, the kinetic and poten-
tial energles and the dissipation function appear as before in equa-
tions (6), (10), and (11). Therefore, if a wing is carrying stores,

the generalized mass given by equation (28) must be increased by an
increment

2 2
MM, =mB, + 28, 81 g ¥ I &1 (31)

This is the mass effect of the store. If the aerodynamic forces are
known, they can be included along with the other aerodynamlc terms.

APPLICATION AND COMPARTSON WITH EXPERIMENT

The method described in the previous section has been used to cal-
culete the flutter characterlstics of several cantilevered wings at
supersonlc speeds. Typlcal results of these calculatlons and comperi-
sone with experiment will be presented for three wings. Piston-theory
calculations for Mach numbers as low &8s 1.3 were made for comparlson
with experiment and with quasi-steady theory, although the plston-theory
region of applicability is usually considered to be Mach numbers greater
than about 2.
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Two of the wings covered by these calculations were 60° and 45°
flat-plate delte wings. Their alrfoll sections were flat with a slight
bevel at the leading edge and were spproxlimately 0.5 percent thick at
the root. A third wing studied was a uniform untapered L45° swept wing
with a panel aspect ratio of 1.33. Its alrfoll section was flat sided
with both edges beveled and was 1.4 percent thick. The geometric, mass,
and vibration characteristics of these wings are glven in reference 7.
Their experimental flutter characteristics were reported in reference 8.

Approximation of Wing Properties

For the wings under consideration, the experimentelly determined
camber mode shapes from reference T were approximated by llnear, quad-
ratic, and cublc polynamials. Thus, the maximum value of P from
equation (24) was 3. None of the wings had flaps; thus x; in equa-

tion (1) may be set equal to 1.0. The accuracy of the approximation
for camber mode shapes 1s 1llustrated in figure L4 where the camber modes
and thelr polynomial spproximations are plotted at varlous span stations
for the first three vibration modes of the 45° delta wing. Figure 4
also shows the large amount of camber deformation present in wings of
this type. The spproximations are seen to be best near the tip where
the deflections are the greatest. Also, the approximations are better
in the lower modes (figs. 4(a) and 4(b)) then in the third mode

(fig. 4(c)). Better approximations in the higher modes could probebly
be obtalned by using polynomlels of higher degree.

For this group of wings, ten spanwise stations (N = 10) at 95-,
85-, =, . . . S-percent span were chosen for camputing the system
properties. Spanwlse integrations were made by using a ten-polnt
numerical Integratlon scheme.

The 60° and 1|-5° flat-plate delta wings had constant mess distribu-
tions, the bevel being neglected. The 45° swept wing wes & plate with
beveled edges such that the mass distributlion was proportional to the
thickness at any point. The chordwise mass dlstrlibution was constant
over the center portion of the chord and. had & linear variation over
the beveled edges. Equation (27) described this distribution accurately
with K = 3.

Results of Flutter Calculations on Flat-Plate Delte Wings

The calculations on one wlng, the 60° flet-plate delta, are fully
described in the appendix. The results are shown In figure 5 and com-
pared with experiment from reference 8. Four separate results of this
three-mode calculation are shown: for pilston theory with and without
the airfoll-thickness term and for quasl-steady theory with and without
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the thickness term. The flutter frequencles, shown as ratios to the
lowest natural frequency, are calculated by all methods to within 15 per-
cent for Mach numbers from 1.3 to 3.0. The flutter boundary is shown in

figure 5 as a plot of the stiffness-altitude parameter b‘TL‘)z-v; agalnst
Mach number.

The stliffness-altitude parameter, used 1n figure 5 and subsequent
figures, depends only upon the physical properties of the wing (in
particular, the stiffness) &nd upon the atmosphere in which 1t operates.
Ites value Increases as elther the altitude or the gtiffness ilncreases.
When plotted as the ordinate against Mach number, as in these figures,
constant dynsmic pressure curves will appear as radlal lines through the
origin. The stable reglon will be above the flutter boundary.

In this case, piston theory predicts flutter on the conservative
side within 235 percent of experiment at M = 1.3 end wlthin 9 percent
at M= 3.0. Quasl-steady theory predicts flutter still more conserva-
tively, within 45 percent at M = 1.3 and within 12 percent at M = 3.0.
In both instances, as would be expected for a thin, flat-plate wing,
thickness terms in the aerodynamic theory had very little effect. It
should be noted that, on a percentage basis, both theories glve better
agreement with experiment as the Mach number becomes larger and the
reduced frequency becomes smeller. ’

The results of similar three-mode calculations on a h5° flat-plate
delta wing are shown in figure 6. The experimental data are fram refer-
ence 8. Agreement between calculation and experiment is better than that
for the 60° delta wing but the calculations are now slightly unconserva-
tive. Piston theory deviated from experiment by 14 percent at M = 1.3
end by 3 percent at M = 3; thus, the accuracy lmproved as the Mach num-
ber lncreased. Quasli-steady theory showed better agreement than plston
theory in this case, 2 percent at M =1.5 and M = 3. Again, thick-
ness terms in the merodynamic theory had very little effect on the cal-
culated flutter speed. Calculated flutter frequency was good, within
6 percent at all Mach numbers. R

Results of Flutter Calculations. on &
Flat-Plate 45° Swept Wing

The results of calculations made with three modes on the untapered
45° swept wing are shown in figure 7. Agreement with experimentel data
from reference 8 is not nearly as good as that for the delta wings. The
calculated flutter frequency 1s seen to be high by about 95 percent for
all four methods of calculation. The flutter boundary is predicted uncon-
servetively by all methods. A possible explanation for the sizable dis-
crepancy between calculations and experiment is the large tip effect.
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Especially et lower Mach numbers, this wing wlll have a large portion of
1ts surface influenced by the tlp, which 1s parallel to the flow. This
effect was not present on the delta wings.

CONCLUDING REMARKS

. A high supersonic Msch number flutter-calculation procedure for

wings with camber iIn thelr vlbration modes has been described. The nor-
mal (coupled) vibration modes of the wing are utilized and their camber
deflections are approximsted by polynomlals. The wing may have a con-
trol surfece and may carry external stores. Aerocdynamic forces on the
stores are neglected but could be included if desired. The aerodynamic
forces actlng on the wing are obtained from piston theory and also by a
quaesl-steady method based on second-order supersonic theory. Both aero-
dynamic theorles allow alrfoll shape and thickness terms to be included.
Use of the plston theory requlres the Mach mumber squared to be much
greater than 1 and both aerodynamic theorles require the reduced fre-
quency to be low.

The method wes used to calculate the flutter speed of three canti-
levered wings fram Mach numbers of 1.5 to 3.0. Good agreement with
experiment wes found for a 60° and a 45° flat-plate delta wing. Sizable
dlfferences from experiment resulted when the method was applied to an

untapered 45° swept wing.

Langley Aeronautical ILaboratory,
National Advisory Committee for Aeronsutics,

langley Field, Va., August 8, 1958.
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APPENDIX
SAMPIE CALCUIATIONS ON A 60° FIAT-PIATE DELTA WING

The method of flutter calculations described in the body of the
paper 1s 1llustrated here for the 60° flat-plate delta wing. The wing
was made of a flat plate of metal and was caentllever mounted at the root.
All computations were performed on digltal computers.

The modal data needed in the calculation are given in table I. The
first three vibration modes are used and the wing deflectlons are deter-
mlned at ten spenwlse stations. In order to specify the chordwlse poly-
nomial for each vibration mode and at each station n, the degree of the
polynomisl P ahd the coordinates of the polynomial at P + 1 chordwlse
polints are glven. Then, by solving e set of P + 1 simultaneous equa-
tions, the constants of equation (24) can be evaluated for each sta-
tlon n and each vibration mode.

With the constants of the deflectlon polynomiels determined, the
flutter-determinant elements given by equations (25) and (28) can be
evaluated by using the mass and geametric data glven 1n table I. Note
that for this flat-plate wing the mass distribution 1s constant. The
alrfoll has beeh assumed to have zero thickness at the leading edge,
flat sides, and nonzero thickn?s§ at the tralling edge; thus all thick-

n

ness terms are zero except 1tg . The wing does not have a flap so

the X, dimension 1s set equal to 1.0. The elements for the flutter

determinant computed by using this date are

1.1087469 o] 0]

EM._,L] = 107 0 2.2970845 )
0 0 0.92344991
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0.24745638
-0.24950129

0.068579763

-2

10

o]

3.9726354
-0.24698926
-0.14509758

103

by [B . 3]

0.2584549k
0.42135938

bna[cid:, - 107" {-0.50658132

3.1259500
-0.50451053
2.TT03439

br [Dg ﬂ 1072

1.7161381
-0.15541T714
=0.24973402

-0.24698912
8.2304250
0.0T1423539

1.1599243
1.2900028
1.1803951

-0.50451053
6.9119095
0.54545789

-0.47849789
0.34179249
0.20163600

-0.14509758
0.071423468

3.30871T73

-0.01418435T
-0.34968308
-0.037120715

2.T7703439
0.54545789
2.6712828

)

(A1)

These elements, computed from equations (25) and (28), together
with the natural frequencles, are fixed for this wing. The aerodynamic
parameters, Mach number and density, can be varied independently in the

flutter determineant of equation (23).

For example, 1f the wing fluttered

at & denslty of 0.00063 slug/cu ft at Mach number 3.0, the factor G
is 3.6 and the flutter determinant is
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The most common method is to substitute successive reduced frequencles kp and to solve each
time for the camplex root X, defined by equation (22). At flutter the imaginary part of this

root, proportional to the damping redquired to produce barmonic motion, is zero. Plots of damping
coefficlent and freq;uency cbtained in this manner are shown 1in figure 8. From this f:l.gure it 1s

'I__J. PN ke —— L T SR
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E 53 and & frequency whlch 1s 2.33 times the first naturel frequency. Thus, the flutter fre-
quency is 156 cps snd the Flutter velocity is 1,842 f£t/sec. This result is plotted in figure 5.

If it were desired to use quasl-steady aerodynamics at the seme Mach number, B = 2.83
would be substituted for M and & = 3.58 for G in equation (23). The terms G or G can
be set equal to zero for a zero-thickness calculation. -

4
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mode.

2bx

Flgure 2.~ Schematic drawing of geometric properties at any spanwise
statlion of wing.

(n)

0 2bl,  2bl, 2bl,_, 2bi., 2b

Figure 3.- Intervals for approximating chordwlse mass distribution.
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(a) First natural mode.

Figure 4.- Compariscn between measured chord deflection mode shapes and
their polynomial approximations for the first three natural modes of
a 45° delta wing at various span stations.
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Figure 4.- Continued.
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Figure L.- Concluded.
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Figure 5.- Calculated flutter frequency retio and stiffness-altitude parsmeter campared with
experiment for a flat-plate 60° delta wing.
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Figure 6.~ Calculeted flutter frequency ratio and stiffness-altitude parsmeter compared with
experiment for a flat-plate 45° delta wing. .
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Figure T.- Calculated flutter frequency ratio and stiffness-altitude parsmeter compared with
. experiment for a flat-plate 45° swept wing.
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Figure 8.- Calculated frequency and demping in each mode for the example given in the appendix.
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